Quite a few of you have been asking when I’d do another Reinforcement Learning course… well, how about today? 😉
[if you don’t want to read my little spiel just click here to get your VIP coupon: https://deeplearningcourses.com/c/cutting-edge-artificial-intelligence]
This is technically Deep Learning in Python part 11, and my 3rd reinforcement learning course, which is super awesome.
The maturation of deep learning has propelled advances in reinforcement learning, which has been around since the 1980s, although some aspects of it, such as the Bellman equation, have been for much longer.
Recently, these advances have allowed us to showcase just how powerful reinforcement learning can be.
We’ve seen how AlphaZero can master the game of Go using only self-play.
This is just a few years after the original AlphaGo already beat a world champion in Go.

We’ve seen real-world robots learn how to walk, and even recover after being kicked over, despite only being trained using simulation.
Simulation is nice because it doesn’t require actual hardware, which is expensive. If your agent falls down, no real damage is done.

We’ve seen real-world robots learn hand dexterity, which is no small feat.
Walking is one thing, but that involves coarse movements. Hand dexterity is complex – you have many degrees of freedom and many of the forces involved are extremely subtle.

Last but not least – video games.
Even just considering the past few months, we’ve seen some amazing developments. AIs are now beating professional players in CS:GO and Dota 2.

So what makes this course different from the first two?
Now that we know deep learning works with reinforcement learning, the question becomes: how do we improve these algorithms?
This course is going to show you a few different ways: including the powerful A2C (Advantage Actor-Critic) algorithm, the DDPG (Deep Deterministic Policy Gradient) algorithm, and evolution strategies.
Evolution strategies is a new and fresh take on reinforcement learning, that kind of throws away all the old theory in favor of a more “black box” approach, inspired by biological evolution.

What’s also great about this new course is the variety of environments we get to look at.
First, we’re going to look at the classic Atari environments. These are important because they show that reinforcement learning agents can learn based on images alone.

Second, we’re going to look at MuJoCo, which is a physics simulator. This is the first step to building a robot that can navigate the real-world and understand physics – we first have to show it can work with simulated physics.

Finally, we’re going to look at Flappy Bird, everyone’s favorite mobile game just a few years ago.

What do you get if you sign up for the VIP version of this course? A brand new exclusive section covering an entirely new algorithm: TD3! As usual, both theory and code for this powerful state-of-the-art algorithm are provided.
I’ll see you in class!
P.S. As usual, if you primarily use another site (e.g. Udemy) you will automatically get free access (upon request) if you’ve already purchased the VIP version of the course from deeplearningcourses.com. |