This course is the next logical step in my **deep learning, data science,** and **machine learning** series. I’ve done a lot of courses about deep learning, and I just released a course about **unsupervised learning**, where I talked about **clustering** and **density estimation**. So what do you get when you put these 2 together? Unsupervised deep learning!

In these course we’ll start with some very basic stuff – **principal components analysis (PCA)**, and a popular nonlinear dimensionality reduction technique known as **t-SNE (t-distributed stochastic neighbor embedding)**.

Next, we’ll look at a special type of unsupervised neural network called the **autoencoder**. After describing how an autoencoder works, I’ll show you how you can link a bunch of them together to form a deep stack of autoencoders, that leads to better performance of a supervised** deep neural network**. Autoencoders are like a non-linear form of PCA.

Last, we’ll look at **restricted Boltzmann machines (RBMs)**. These are yet another popular unsupervised neural network, that you can use in the same way as autoencoders to **pretrain** your supervised deep neural network. I’ll show you an interesting way of training restricted Boltzmann machines, known as **Gibbs sampling**, a special case of **Markov Chain Monte Carlo,** and I’ll demonstrate how even though this method is only a rough approximation, it still ends up reducing other cost functions, such as the one used for autoencoders. This method is also known as **Contrastive Divergence** or **CD-k**. As in physical systems, we define a concept called **free energy** and attempt to minimize this quantity.

Finally, we’ll bring all these concepts together and I’ll show you visually what happens when you use PCA and t-SNE on the features that the autoencoders and RBMs have learned, and we’ll see that even without labels the results suggest that a pattern has been found.

All the materials used in this course are FREE. Since this course is the 4th in the deep learning series, I will assume you already know calculus, linear algebra, and **Python** coding. You’ll want to install **Numpy** and**Theano** for this course. These are essential items in your **data analytics** toolbox.

If you are interested in deep learning and you want to learn about modern deep learning developments beyond just plain **backpropagation**, including using unsupervised neural networks to interpret what features can be automatically and hierarchically learned in a deep learning system, this course is for you.

Get your EARLY BIRD coupon for 50% off here: https://www.udemy.com/unsupervised-deep-learning-in-python/?couponCode=EARLYBIRD

Go to comments